Homoiterons and expansion in ribosomal RNAs
نویسندگان
چکیده
Ribosomal RNAs in both prokaryotes and eukaryotes feature numerous repeats of three or more nucleotides with the same nucleobase (homoiterons). In prokaryotes these repeats are much more frequent in thermophile compared to mesophile or psychrophile species, and have similar frequency in both large RNAs. These features point to use of prokaryotic homoiterons in stabilization of both ribosomal subunits. The two large RNAs of eukaryotic cytoplasmic ribosomes have expanded to a different degree across the evolutionary ladder. The big RNA of the larger subunit (60S LSU) evolved expansion segments of up to 2400 nucleotides, and the smaller subunit (40S SSU) RNA acquired expansion segments of not more than 700 nucleotides. In the examined eukaryotes abundance of rRNA homoiterons generally follows size and nucleotide bias of the expansion segments, and increases with GC content and especially with phylogenetic rank. Both the nucleotide bias and frequency of homoiterons are much larger in metazoan and angiosperm LSU compared to the respective SSU RNAs. This is especially pronounced in the tetrapod vertebrates and seems to culminate in the hominid mammals. The stability of secondary structure in polyribonucleotides would significantly connect to GC content, and should also relate to G and C homoiteron content. RNA modeling points to considerable presence of homoiteron-rich double-stranded segments especially in vertebrate LSU RNAs, and homoiterons with four or more nucleotides in the vertebrate and angiosperm LSU RNAs are largely confined to the expansion segments. These features could mainly relate to protein export function and attachment of LSU to endoplasmic reticulum and other subcellular networks.
منابع مشابه
ریبو نوکلئیک اسیدها (RNAs) در اسپرم بالغ
The nucleus of mature sperm contains a complex population of transcripts such as mRNAs and miRNAs which expressed and accumulated during process of spermatogenesis however in spermatozoa, transcription is inert. The spermatozoa do not have cytoplasmic ribosomal compounds and translation apparatus. However, spermatozoa can translate cytoplasmic mRNAs de novo, using mitochondrial poly...
متن کاملRibosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments
Ribosomal RNAs (rRNAs), assisted by ribosomal proteins, form the basic structure of the ribosome, and play critical roles in protein synthesis. Compared to prokaryotic ribosomes, eukaryotic ribosomes contain elongated rRNAs with several expansion segments and larger numbers of ribosomal proteins. To investigate architectural evolution and functional capability of rRNAs, we employed a Tn5 transp...
متن کاملThe Expansion Segments of 28S Ribosomal RNA Extensively Match Human Messenger RNAs
Eukaryote ribosomal RNAs (rRNAs) have expanded in the course of phylogeny by addition of nucleotides in specific insertion areas, the expansion segments. These number about 40 in the larger (25-28S) rRNA (up to 2,400 nucleotides), and about 12 in the smaller (18S) rRNA (<700 nucleotides). Expansion of the larger rRNA shows a clear phylogenetic increase, with a dramatic rise in mammals and espec...
متن کاملA pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase.
Ribosome biogenesis in yeast requires 75 small nucleolar RNAs (snoRNAs) and a myriad of cofactors for processing, modification, and folding of the ribosomal RNAs (rRNAs). For the 19 RNA helicases implicated in ribosome synthesis, their sites of action and molecular functions have largely remained unknown. Here, we have used UV cross-linking and analysis of cDNA (CRAC) to reveal the pre-rRNA bin...
متن کاملYeast rRNA Expansion Segments: Folding and Function.
Divergence between prokaryotic and eukaryotic ribosomal RNA (rRNA) and among eukaryotic ribosomal RNAs is focused in expansion segments (ESs). Eukaryotic ribosomes are significantly larger than prokaryotic ribosomes partly because of their ESs. We hypothesize that larger rRNAs of complex organisms could confer increased functionality to the ribosome. Here, we characterize the binding partners o...
متن کامل